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PREFACE AND SUMMARY

A previous Memorandum, RM-5407-PR, introduced and analyzed a

simple multitype population model. That model was special insofar

as the input process was assumed Poisson. This Memorandum analyzes

a modified model that has for its input process an arbitrary renewal

process. This modification allows far greater flexibility in fitting

the model to some real situation than does the case of Poisson inputs.

S. C. Port is a consultant to The RAND Corporation.
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A MULTITYPE STOCHASTIC POPULATION MODEL: AN EXTENDED VERSION

1. INTRODUCTION

A previous Memorandum introduced a multitype stochastic population

model, motivated it with examples, and analyzed some of its mathematical

consequences. The purpose here is to do the same with a modified model

that includes the original one as a special case. This new model is the

same as the previous one except that the input process is an arbitrary

renewal process instead of a Poisson process. This allows far greater

flexibility in fitting the model to a real situation.

The new model is as follows. A particle may be in one of r different

states. Particles enter the system in bunches that arrive according to

a renewal process TI(t) having waiting time NWi , which possesses a density

and finite variance. The total number of particles in the i-th bunch is

X i The processes fl(t) and (Xi are independent. The composition of the

i-th bunch is NXil, ... , x ir; where conditional on Xi, the r-vector

fXil, ... ', x I is multinomial (X 1 ... , ;r ). After arrival into the
i' ir i' 1' (r

system the particles all act independently of each other and tranbform

their states according to a semi-Markov process having transition law

P ij(t) and final probabilities, lim P ij(t) ,. We will also assume that

S IPij(t) - dt <
0

As before, let M (t) and Yj(t) denote, respectively, the number of

particles that enter the system in state j by time t and the number of

particles in state j at time t.

For 1 and X2 negative, set

E~e Xe 1M (t) e ¥j X t '2(t) t ,

Sidney Port, A Multitype Stochastic Population Model, The RAND
Corporation, RM-5407-PR, September 1967.



and for o < 5 < 1, set

E(si) = G(s)

and set pl(t) - N P My( t), cv[1 - p2 (t)l and p3 =MyJ ij(t).

Then all of the information about the Y (t), M (t) follows from the

following integral equation that the ft (ý, X2 satisfy:

(1.1) Xt(•l'•2) P(W 1 > t) +f GFl + e X 1  2 (

0

+ (e= -P2(lt -)

+ (e 2 O.P3(t - 6) t-s("l' X 2 )dP(W 1  a.

This equation may be derived by the usual renewal type argument

and is left to the reader. We note that if the Wi are exponentially

distributed with mean l/4i, then the equation becomes

(xi- I2 ettl [+ 6It -d(s)Ije~ dal
2 L 0

and direct substitution shows that

(1.2) f jX1 (Xl 2) exf I* ft (s) - 11 ds}
0

Here

G Il.. + (e' 4  
- )P 1 (s) + (e' - lP 2(s) + (e2 Oy-

Setting XI - i 11' X2 a 1e2 in (1.2) and comparing with Eq. (2.3) of

RM-5407-PR, we see that these are the same. Thus in the case of Poisson

arrival, the integral Eq. (1.1) becomes the basic equation of RM-5407-PR.

We will state and prove our general results for processes in

continuous time. Naturally, analogous results hold in discrete time.

Unfortunately, one cannot solve Eq. (1.1) in the general case. However,
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we can use it to derive the behavior of the moments of Yj(t) and Mj(t).

Only the first two moments will be of interest to us. Set p= EXI,

-i
=2 - EX 1 (XI - 1), N - (EW 1 ) . Under our assumptions, ET(t) - ty - I -

[Var WI - (EW 1 ) l2Y2/2 t'2' .

Theorem 1. Under the assumptions of the model ýM (t)It, Y (t)/tl

converio - rr-fjý,11. 1t• - (',aj , 1 ",11 J1. MUteover,

(1.3) EYj(t) = winfl t + PI(YJ + 1711) + o(I)

where

r

J- 2 [ iPij(t) - n1 ] dt,
0 i1

(1.4) Var Y 2(t) =F 2 yfl2I 2 'Y + 1ylý jt + o(t),1 at +jt P=2 2 I 2

(1.5) EM•(t) M - 'YIat + plotjI + o(I),

and

(1.6) Var M (t) = [2"2alYI + u( 2 )jY 4 ýll•Y]t + o(L).

Theorem 2. Under the assumption of the model,

Cov [M (t), Y¥(t)] [2p + ((2) + y 1 )%flIY]t + 0(t).

Let us now compare our general results with those for the special

case when W is exponential; i.e., ý(t) is Poisson with the same

parameter values. Then the first term in expansion of the means is

the same and the second term differs by the factor involving I. Like-

wise, in the asymptotic expansion of the variance, we see that there

is an additional term involving I.
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The exponer'ial waitir. time !s a special case of the gamma. If

W has the gamma density,

Uf V-1 -OXf (x) -( x e , of > o, U > o
'Y 1u)x e

then

2 +

and thus

2 2S= u + 1) - -u vl-u
2 2 2 2

Thus I >o if u" 1, I -o, u = l,and I<o if u> . The case u = I

is the exponential distribution.

An interesting special case occurs when the arrival times are con-

stant. Here it is better to formulate the model in discrete time, and

it is convenient to take one time unit as the time between successive

group arrivals. Then if Y (n) is the number of particles in state j

at time n, we see that

Y (n) - X + ... + X
j nl nn

where Xni denotes the number of particles in state j at time n which

arrive at time i. Thus

E[ e~j~] n iel

Now

r
Xnj " kl OkPk + okl) .

SI I



and
r r r

Var Xn = (Var X) ckkji) n-i)( Z: 7pkn-i)

k= k=,lk-k ki

7(2 + pITi + o(l).

We therefore see that

Var Y (n) = nF(Var X )7 j + •1 7 (0 - T) + o(n).

Thus, computing the characteristic function, we have

n~) ! liK ar Xflin+ o(-iE exp [8(Y.(n) - EY.(n) Var Y[) i [1 i 2 iar Y (n)

[ 2 + )]n _92 /2=i- ": + 0( - e

Hence we have established the following.

Theorem 3. For the case of constant group arrivals the number

of partials Y (n) in state j at time n normalized by its mean and

variance is asymptotically normally distributed.
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2, PROOF OF THEOREM I

We first consider Y (t). Setting = o in (1.1) and setting

E { . t () , 4e see that
L t

' (\) 1 - F(t) + J1 G[ + (e' - 1) p(t - s)-t(ý)t dF(s),
to

0

where
r

p(t) = PI(t) + p3 (t) = Pij(t),
1=1

and F(t) = P(W 1 ! t). A differentiation on X yields

( ) ' t eIt'
. = G'(.)ep~ s)I dFs) ' "

(2.1) . - dF(s) + G(...)t_ dF(s).
t 0 

0

Let Ill EX and ý2 EXI(XI - 1). Setting X = o in (2.1) yields

t t
(2.2) EYM(t) - P j p(t - s) dF(s) + 1" EYj(t - s) dF(s).

This integral equation is readily solvable by Laplace transforms. We

will illustrate the technique here and henceforth leave such details

to the reade-. Denote Laplace transforms by and let the argunent of the

transform function be X. Then (2.2) yields

-Y Pl pF + EYF

Ilence

iL
"EY1 al1 - F

(2.3) EY (t E p(t- s)P(WI + + Wn e da)
J-I '0

rt

"ýl Jo p(t - s) dN(s),

..-0- I I - I l
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where here and in the following N(t) = ETI(t) is the renewal function.

Under our assumptions on the waiting timcs it is known that
t

N(t) F n(s) db., where n(s) is the renewal density, and that

Ijn(s) -/EW 1  ds
0

Also

SEW 2(EW 2 Var W (EW)2

1 = ' Fn(s) - I/EW] ds 1 2
0 1 (EWI) 2 2(EW1 ) 2

Set Y = (EW1 ) From (2.3) we see that

EYM(t) tL Rl ýLS [p(t - s)n(s) J ]ds

- [p(t - s) - Tl in(s) s0

t
+ ý•fJ , [n(s) - yl ds.

Now

rt
,I In(s) - yv: p, 1 7ilI + o(i), t to.

0

Also

t Pt

It [p(t - S) - TI]Tn(s) ds - I [p(t - 8) - TlTn(s) - v ds
0 O

t

+ y j5 [p(s) - Ij I ds.

01

The first integral on the right is clearly o(l) as t -• •, and the

second is yj + o(I), where

J , [p(s) - 1iI ds.

o



Hence

t

I [p(t - s) - TL]n(s) ds p YJ + o(l).
0

Thus

(2.4) EYj(t) - tp Yil = .YJ + 1lI 1 + o(l).

2
We must now analyze the second moment EYj(t) . Differentiating

(2.1) on \ and setting \ = o yields the equation

EY (t) = 2 t 4iP(t - s)EY (t - s) dF(s) + p 2  p2(t - s) dF(s)
0 0

ýt t
+ PI p(t - s) dF(s) + EY'(t - s) dF(s)

0 0

Solving, we find that

(2.5) EY2 (t) = 2I p(t - s)EY (t - s)n(s) ds

+ p2 J p 2 (t - s)n(s) ds + EY (t).
0

To establish our results we make good use of the following.

Lemma 2.1. Let a~t) and b(t) be nonnegative functions such that
U

a(t) - ao, b(t) - bare in Ll(o, -), and set Ja ff [a(t) - a] dt,U O

=b = a [b(t) - bC dt. Suppose M(t) - o, M(t) T, t - *, and

M(t) - tM -Jm t -m Then

t abMt 2

(2.6) f b(t - s)M(t - s)a(s) ds 00 0
Jo 2

=f aoboJ t + Mobo3at + o(t).
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Proof. We can write

•t a bMt 2

(2.7) b(t s)M(t - s)a(s) ds - 00 0

0o 2

t
t b(t - s)[M(t - s) - (t - s)M la(S) ds
0

t Mabt 2

+ M ft (t - s)a(s)b(t - s) ds - 0 0 0
2

0

Now

b(t)[M(t) - tM 0 bJM, t - U, a(t) - a, t-.a.

Thus

t

(2.8) b(t - s)[M(t - s) - (t - s)M la(s) ds - abJMt, t -. 0.
0

On the other hand,

t t
(2.9) M J0 (t - s)a(s)b(t - s) ds = M 0 it sb(s)a(t- s) ds

0 0

t

0M 0 sb(o)Fa(t 
- a) - a 10

0 t Ma bt 200

+ Ma rs(b(s) - b + 2
0

Now integrating by parts we find that

t t

(2.10) ft s[b(s) - b] ds - t [ Fb(s) b I ds
0 00

t s
da [b(x) - b I dx

00 0

a tJb - tJb + 0(t) = 0(t).
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Also

tsb(s)[a(t s ) a Io ds ft s[b(s) -bol[a(t - a) a I
0 0

0 0 t

+b° s[a(t - s) -ao

The first term on the right is clearly oct), and the second term is

ttb 0b" s[a(t - s) - a ! ds = -b [ (t - s)ba(s) - a 0 ds

0 .J 0O

0 0
t t

tb 0 I a(ts) aoa ds = bIo ( t - [ a 0 odt)

O 0

Thus

t

(2.11) f sb(s)Fa(t - a) - a0 ] ds = tb Ja + o(t).
0

Substituting (2.10) and (2.11) into (2.9) yields

2
SMa b t

(2.12) M (t - s)a(s)b(t - a) ds = 000 + MbJt+o(t).
oo o a0

Using this and (2.8), we find from (2.7) that (2.6) holds.

We may now proceed to analyze EY2(t). Taking b(t) = p(t),

M(t) = EYj(t), and a(t) = n(t) in the lemma and using (2.4) we find that

t

24I1 p(t - s)EY (t - s)n(s) ds

= 2 2i + '1(11 YJ + tjirlI)t + P 1 YT7i itI + o(t)

From (2.5) we then find that

Ey2 (t) - Y 2 2P t2 + FL2'T'l (P 'J + Pi7 I) + 2 2 g2 it

+ p 2Y+ YTT )t + o(t).
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On the other hand

2

[EY (t)] 2 
= [EYj(t) - i yr. t7[EYu(t) - Ciyt!

22_22

+ 2ty7 ýl [EY (t) - '1i Ft1 + t 2I2T22

ii 1 1 j lj
2•22

1"lj' t 2+ 2,v7l i.$1 bYJ + PTl7IIt + 0(t).

Thus

(2.13) Var Y (t) = EY2(t) - [EY (W)2

= [24 2 r'jI + 12 jY + Ayl YT1t + 0(t).

Turning our attention now to M (t) we may proceed in a similar

manner. Setting W 2 o in (1.1) and letting $ (k) - Ele ]J

we find that

0t(X) = I - F(t) + f G[I + (e> - I)o 1ýts ()) dF(s).
0 J -s

Proceeding as before we find that

EM (t) = -rlyjN(t)

and

2~~t tl• 2t

FMH(t) 2 2 0 EM (t - s)n(s) ds + it 2 ortN(t) + EHj(t)

2 2J~

"2U a'J o N(t - s)n(s) da + tL2 ojN(t) + a/ N(t)

In Lema 2.1 set b(t) = 1, M(t) - N(t), and a(s) - n(a).

Then

t 22
j N(t - s)n(s) de - 2 t2 + 2lt + o(t).

02
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Thits

lj2 2EM 2(t) - 2p 2 a [-- --- t + -V2 2Yt + P'jYt + o(t)

since

2 2'2 2 2 2 2 2 2
FEM (t)2 2 2 2 l.N(t a l [N(t) Yt] + 2ytFN(t) - yt7 + t t

22lo 2Y1 + l4 2Yt + o(i).

Thus

(2.14) Var M (t) = [,2of2YI + P2•j 2 + + Pay~t + o(t).

We may now easily establish the law of large numbers for Y (t)

and Mj(t). Indeed, by (2.13) we know that Var Yj(t) , O(t), and thus

I IYJjp) > C 5< 22 Y O( (t 1

t e t2

Likewise (2.14) shows that

[MV) r ji I t) I
' t - > ea e 2 o(•)

Thie the 1

This completes the proof of Theorem 1.
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3. PROOF OF THEOREM 2

Computing

2

I. - 2 =2o

we find that

t
(3.1) Coy (Mi(t), Y (t)) E "( 2 )(p1 (s) P3 (s))(PI(s) +

"+ pPl(s) + P(pI(s) + p 2 (s)) EY.(t - s)

"+ ýjl1(Pl(s) = p 3 (s))EM (t - s)ln(s) ds.

Consider the third term on the right. Since P1 + P2 = ciJ this term

becomes

0 0  EY (t - s)n(s) ds.

In Lemma 2.1 set b(t) a 1, a(s) - n(s), and M(t) - EY (t). Then in view

of Eq. (1.3)

2 2

(3.2) Poe EY (t - s) n(s) ds -

2 2.4

aO2F-yj + 17 Ilt ap2YTIt+0t

r
Similarly, in the fourth term on the right, p,(s) + p 3 (s) - •iP ij(s),

and thus this term is

t

P P j(s)EM3 (t - s)n(s) ds.

In Lemma 2.1 set b(t) P C(t), EMI(t) - M(t),and a(t) - n(t). Then

in view of Eq. (1.5) we see that
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(3.3) da (SE (t-t 2~)d

2y~ It + 0(t).

Now

EY (t)EM~ (t) - t 2 L2 y2 c

22
= 1 y yyj + rTT ]lt + Yfl ce It + 0(t).

Thus from (3.1) -(3.3) we see that

Coy (Y (t), M (t) = j 2 +t Yl1 - + 0(t).

This eistablishes Theorem 2.
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